MATHEMATICS SPECIALIST

MAWA Year 12 Examination 2019

Calculator-assumed

Marking Key

© MAWA, 2019

Licence Agreement

This examination is Copyright but may be freely used within the school that purchases this licence.

- The items that are contained in this examination are to be used solely in the school for which they are purchased.
- They are not to be shared in any manner with a school which has not purchased their own licence.
- The items and the solutions/marking keys are to be kept confidentially and not copied or made available to
 anyone who is not a teacher at the school. Teachers may give feedback to students in the form of showing
 them how the work is marked but students are not to retain a copy of the paper or marking guide until the
 agreed release date stipulated in the purchasing agreement/licence.

The release date for this exam and marking scheme is

• the end of week 1 of term 4, 2019

Question 9

CALCULATOR-ASSUMED MARKING KEY

(4 marks)

Solution	
With the data given, the interval beween data points is $h=2$ hours	
The trapezoidal rule yields that the integral is	
$I = \frac{1}{2}h[f_0 + 2(f_1 + \dots + f_5) + f_6]$	
Now 1.57+2.87+3.15+2.77+1.53=11.89 so that	
I = 0.24 + 2(11.89) + 0.16 = 24.18	
Hence total electricity generated is approximately 24.18 kWh	
Mathematical behaviours	Marks
 notes the interval between given data points 	1
 writes down the appropriate composite trapezoidal rule 	1
 computes the appropriate integral (-1 for one mistake) 	2

Question 10(a)

(2 marks)

Solution		
y = h(x)	$y = \frac{1}{h(x)}$	
Vertical asymptote at $x = 2$	x-intercept at (2,0)	
Horizontal asymptote at y = 2	Horizontal asymptote at $y = \frac{1}{2}$	
Mathematical beha	viours	Marks
 states x-intercept correctly 		1
 states equation of horizontal asymptot 	e correctly	1

Question 10(b)(i)

CALCULATOR-ASSUMED MARKING KEY

Question 10(b)(ii)

Question 11(a)

(1 mark)

CACULATOR-ASSUMED

MARKING KEY

Solution	
Lines parallel to the x-axis below $y < 0$ cut the curve twice	
$g(x)$ is not a one-to-one function, therefore $g^{-1}(x)$ does not exist	
Mathematical behaviours	Marks
 states the graph of g(x) does not pass the horizontal line test or states g(x) is not a one to one function 	1

Question 11(b)

Solution $R_g = \{ y : y \le 2, y \in \mathbb{R} \}$ $D_f = \{ x : x \le 2, x \in \mathbb{R} \}$ $f \circ g(x)$ exists because $R_g \subseteq D_f$ Mathematical behaviours Marks • states R_g and D_f correctly 1 1 • states a reason

Question 11(c)

(1 mark)

(2 marks)

Solution	
$f\left[\frac{2x}{\left(x+2\right)^{2}}\right] = \left[\frac{2x}{\left(x+2\right)^{2}}\right]^{2}$	
$=\frac{4x^2}{(x+2)^4}$, $x \neq -2$	
Mathematical behaviours	Marks
• forms a correct expression for $f \circ g(x)$	1

Question 11(d)

Solution	
$R_{gf} = \left\{ y : y \ge 0, y \in \mathbb{R} \right\}$	
Mathematical behaviours	Marks
• states that $y \ge 0$	1

(1 mark)

CALCULATOR-ASSUMED MARKING KEY

Question 12(a)

(3 marks)

Solution	
$xy\frac{dy}{dx} = y^2 - 1$	
$\int xy dy = \int \left(y^2 - 1 \right) dx$	
$\int \frac{y}{\left(y^2 - 1\right)} dy = \int \frac{1}{x} dx \dots $	
$\frac{1}{2}\int \frac{2y}{\left(y^2-1\right)} dy = \int \frac{1}{x} dx$	
$\frac{1}{2}\ln y^2 - 1 = \ln x + c$ (2)	
$\ln y^2 - 1 = 2\ln x + 2c$	
$\ln\left y^2-1\right = \ln\left k x^2\right $	
i.e. $y^2 - 1 = k x^2$	
i.e. $y^2 = k x^2 + 1$	
Mathematical behaviours	Marks
 separates variables to form statement (1) 	1
 integrates correctly to form statement (2) or its equivalent 	1
obtains expression for general solution	1

Question 12(b)

Solution	
$x = 1.y = 0 \Longrightarrow y^2 = k x^2 + 1$	
$0 = k (1)^2 + 1$	
k = -1	
i.e $y^2 = -x^2 + 1$	
or $x^2 + y^2 = 1$ is a circle with radius of 1 unit and centre at (0,0)	
Mathematical behaviours	Marks
obtains correct expression for equation of circle	1
 states radius and coordinates of centre correctly 	1

Question 13(a)

CACULATOR-ASSUMED MARKING KEY

Solution	
$x^2 + 1 + e^{x+y} = (2y-1)^2$	
$\frac{d}{dx}\left(x^{2}+1+e^{x+y}\right)=\frac{d}{dx}\left[\left(2y-1\right)^{2}\right]$	
$2x + e^{x+y} \left(1 + \frac{dy}{dx}\right) = 2\left(2y - 1\right) \cdot 2 \cdot \frac{dy}{dx}$	
$2x + e^{x+y} + e^{x+y}\frac{dy}{dx} = 4(2y-1)\frac{dy}{dx}$	
$2x + e^{x+y} = \left[4\left(2y-1\right) - e^{x+y}\right]\frac{dy}{dx}$	
$\frac{2x+e^{x+y}}{\left[4(2y-1)-e^{x+y}\right]} = \frac{dy}{dx}$	
i.e $\frac{dy}{dx} = \frac{2x + e^{x+y}}{4(2y-1) - e^{x+y}}$	
Mathematical behaviours	Marks
• differentiates e^{x+y} implicitly correctly	1
• differentiates $(2y-1)^2$ with respect to x correctly	1
• obtains the required expression for $\frac{dy}{dx}$	1

CALCULATOR-ASSUMED MARKING KEY

Question 13(b)

(5 marks)

Solution	
$a = 4v^2$	
$\frac{dv}{dt} = 4v^2$	
$\frac{dx}{dt} \times \frac{dv}{dx} = 4v^2$	
$v \times \frac{dv}{dx} = 4v^2 \dots \qquad (1)$	
$\frac{dv}{dx} = 4v$	
$\int \frac{dv}{4v} = \int dx$	
$\frac{1}{4}\int \frac{1}{v}dv = \int dx (2)$	
$\frac{1}{4}\ln v = x + c$ (3)	
$x = 2, v = e^5 \Longrightarrow \frac{1}{4} \ln \left e^5 \right = 2 + c$	
$c = -\frac{3}{4}$	
$\therefore \frac{1}{4} \ln v = x - \frac{3}{4}$	
$x = 1, v = ? \Longrightarrow \frac{1}{4} \ln v = 1 - \frac{3}{4}$	
$\frac{1}{4}\ln\left v\right = \frac{1}{4}$	
$\ln v = 1$	
$\therefore v = e$	
Mathematical behaviours	Marks
• identifies $a = \frac{dv}{dt}$ and uses $\frac{dv}{dt} = v\frac{dv}{dx}$ to form statement (1)	1
• simplifies and separates variables to form statement (2) or its equivalent	1
anti-differentiates to obtain statement (3) or its equivalent	1
• use $x = 2$, $v = e^{-1}$ to determine the constant of integration correctly	
• determines the velocity correctly when $x=1$	1

CACULATOR-ASSUMED MARKING KEY

Question 14(a)

(3 marks)

Solution	
If $z^5 = -1$ then $z^5 = \cos(2k+1)\pi + i\sin(2k+1)\pi$ for $k \in \mathbb{Z}$	
By de Moivre's theorem then $z = \exp(i\vartheta)$ where $\vartheta = \frac{(2k+1)\pi}{5}$	
Hence the distinct roots are $z = \exp(i\vartheta)$ where $\vartheta = \frac{(2k+1)\pi}{5}$, $k = 04$	
For arguments in the range given this is equivalent to $z = \exp(i\vartheta)$, $\vartheta = \pm \frac{3\pi}{5}, \pm \frac{\pi}{5}, \pi$	
Mathematical behaviours	Marks
 writes -1 in appropriate polar form 	1
applies de Moivre's theorem correctly	1
 restricts the arguments of the solutions to the specified range 	1

Question 14(b)

Solution	
We note that $(2i)^5 = 32i^5 = 32i$	
Hence	
$(z-1)^{5} + (2i)^{5} = 0 \qquad \Longrightarrow \qquad \left(\frac{z-1}{2i}\right)^{5} + 1 = 0$	
From part (a) we conclude that	
$\frac{z-1}{2i} = \exp(i\vartheta) \implies z = 1 + 2i\exp(i\vartheta)$	
with the arguments $ {\cal G} { m as} { m given}$ in part (a)	
Mathematical behaviours	Marks
• realises that $32i = (2i)^5$	1
• divides equation through by $(2i)^5$ thereby reducing the equation to the form	1
in (a)	
deduces the five roots of the modified equation	1

CALCULATOR-ASSUMED MARKING KEY

Question 15(a)

(2 marks)

Solution	
$E(\overline{X}) = E(X) = 0.5$	
$Var(\bar{X}) = \frac{Var(X)}{n} = \frac{1}{24} \cong 0.042$	
Mathematical behaviours	Marks
• obtains correct answer for $E(\overline{X})$	1
• obtains correct answer for $Var(\bar{X})$	1

Question 15(b)

Solution \overline{X} is normally distributed (*) $Z \le \frac{0.25 - 0.5}{2}$ 0.25 - 0.5 $P(\bar{X} \le 0.25) = P$ $= P(Z \le -1.224) = 0.19$ $Z \leq$ = P1 24 24 Marks Mathematical behaviours 1 uses normality • 1 obtains correct answer •

Question 15(c)

(2 marks)

Solution	
$\overline{X} \le 0.25 \Leftrightarrow \frac{x+y}{2} \le 0.25 \Leftrightarrow x+y \le 0.5$	
So the required probability equals the area of the shaded triangle (*)	
i.e. 0.125	
Mathematical behaviours	Marks
 obtains equality (*) 	1
obtains correct answer	1

Question 15(d)

(3 marks)

Solution	
$\bar{X} \le 0.25 \Leftrightarrow \frac{x+y}{2} \le 0.25 \Leftrightarrow x+y \le 0.5$	
Because the sample size is large enough, the distribution of \overline{X} is approximately normal. (*)	
The mean is 0.5 and the variance is $\frac{1}{12n} = \frac{1}{120} \approx 0.00833$ (**)	
So $P(\bar{X} \le 0.25) \cong 0.003$	
Mathematical behaviours	Marks
uses normal approximation	1
 uses correct variance (**) 	1
obtains correct answer	1

CACULATOR-ASSUMED MARKING KEY

Question 16(a)

<u>(2 mark</u>s)

Solution	
If $u = \cos x$ then $u'(x) = -\sin x$ and $\int_{0}^{\pi} \frac{\sin x}{1 + \cos^{2} x} dx = \int_{1}^{-1} \frac{(-du)}{1 + u^{2}} = \int_{-1}^{1} \frac{du}{1 + u^{2}} = \left[\arctan u\right]_{-1}^{1} = \frac{\pi}{4} - \left(-\frac{\pi}{4}\right) = \frac{\pi}{2}$	
Mathematical behaviours	Marks
• uses the given change of variable to write integral in terms of <i>u</i>	1
integrates correctly	1

Question 16(b)

Solution	
If $v = a - x$ then $dv = -dx$ and so $\int_{0}^{a} f(x) dx = \int_{a}^{0} f(a - v)(-dv) = \int_{0}^{a} f(a - v) dv$ Since v is a dummy variable this integral is equal to $\int_{0}^{a} f(a - x) dx$ as required	
Mathematical behaviours	Marks
 writes the integral in terms of the variable v 	1
 realises that the minus sign in the derivative can be accounted for by interchanging limits 	1

1

1

Question 16(c)

If $I = \int_{0}^{\pi} \frac{x \sin x}{1 + \cos^2 x} dx$ then using the result of part (b) with $f(x) = \frac{x \sin x}{1 + \cos^2 x}$ gives that $I = \int_{0}^{\pi} \frac{(\pi - x)\sin(\pi - x)}{1 + \cos^{2}(\pi - x)} dx$ Now $\sin(\pi - x) = \sin x$ and $\cos(\pi - x) = -\cos x$ so that $I = \int_{0}^{\pi} \frac{(\pi - x)\sin x}{1 + \cos^{2} x} dx = \pi \int_{0}^{\pi} \frac{\sin x}{1 + \cos^{2} x} dx - I$ Thus using the result of part (a) $I = \pi \left(\frac{\pi}{2}\right) - I \implies 2I = \frac{\pi^2}{2} \implies I = \frac{\pi^2}{4}$ Mathematical behaviours Marks writes down the form of the integral using the structure of part (b) 1

Solution

establishes the forms $sin(\pi - x) = sin x$ and $cos(\pi - x) = -cos x$

simplifies the integrand •

•

1 realises that the integral I is now part of the integral in part (a) and I itself 1 combines the previous results to deduce the result

(5 marks)

Question 17(a)

CACULATOR-ASSUMED MARKING KEY

(4 marks)

(3 marks)

Solution	
If $z=1+2i$ then $z^2=-3+4i$, $z^3=(-3+4i)(1+2i)=-11-2i$	
and $z^4 = (-11 - 2i)(1 + 2i) = -7 - 24i$	
Since $P(z) \equiv z^4 - 8z^3 + 42z^2 + \alpha z + \beta$,	
$P(1+2i) = -7 - 24i - 8(-11 - 2i) + 42(-3 + 4i) + \alpha(1+2i) + \beta = 0$	
Imaginary parts give	
$-24 + 16 + 168 + 2\alpha = 0 \Longrightarrow 2\alpha = -160 \Longrightarrow \alpha = -80$	
and real parts give	
$-7+88-126-80+\beta=0 \Longrightarrow \beta=125$	
Mathematical behaviours	Marks
• computes the values of z^2 , z^3 and z^4	1
• substitutes into expression for $P(1+2i)$ and equates to zero	1
• compares imaginary parts to deduce α	1
• compares real parts to deduce β	1

Question 17(b)

Solution

As $D(x)$ has a set of $f(x)$ and $f(x) D(1 + Q(x)) = 0$ then size $D(1 + Q(x)) = 0$	
As $P(z)$ has real coefficients, if $P(1+2i) = 0$ then also $P(1-2i) = 0$	
Then $(z-1-2i)(z-1+2i) = (z^2-2z+5)$ is a factor of $P(z)$	
By long division $P(z) = z^4 - 8z^3 + 42z^2 - 80z + 125 = (z^2 - 2z + 5)(z^2 - 6z + 25)$	
Mathematical behaviours	Marks
• realises that $1-2i$ must also be a root of $P(z) = 0$	1
 deduces a quadratic factor of the quartic 	1
	1

• deduces the other quadratic using long division

Question 18(a)

(2 marks)

(3 marks)

Solution	
$E = z_{\alpha} \frac{\sigma}{\sqrt{n}}$, i.e. $0.25 = 1.96 \frac{3.4}{\sqrt{n}}$ (*)	
Solving for <i>n</i> gives $n \cong 710.54$	
So the sample size should be at least 711	
Mathematical behaviours	Marks
obtains equation (*)	1
obtains correct answer	1

Question 18(b)

SolutionConfidence interval is $\bar{X} - E \le \mu \le \bar{X} + E$, where $E = z_{\alpha} \frac{\sigma}{\sqrt{n}}$,i.e. $16.2 - 1.96 \frac{3.4}{\sqrt{127}} \le \mu \le 16.2 + 1.96 \frac{3.4}{\sqrt{127}}$ i.e. $15.61 \le \mu \le 16.79$ Mathematical behavioursMarks• uses correct formula (*)• obtains correct centre of CI (implicitly at least)• obtains width of CI (implicitly at least)1

Question 18(c)

• provides a valid reason

(2 marks)

1

Solution	
The evidence provided by the sample suggests that there has been a change ir	n TV viewing
time, but it is hardly compelling, since the old mean (15.7) lies inside the confidence	
interval.	
Mathematical behaviours	Marks
obtains correct conclusion	1

Question 19(a)

(1 mark)

Solution	
$\frac{dN}{dt} = \frac{1}{5000} \times 100 \times (400)$ $\frac{dN}{dt} = 8$	
Mathematical behaviours	Marks
• substitutes $N = 100$ into equation to solve for $\frac{dN}{dt}$ correctly	1

Question 19(b)

(1 mark)

Solution	
As $N \to 500$, $\frac{dN}{dt} \to 0$	
i.e. as the number of nesting pairs of black terns approaches 500, their rate	of increase
approaches zero	
Mathematical behaviours	Marks
• states $\frac{dN}{dt}$ tends to zero and gives interpretation correctly	1

Question 19(c)

Solution
$\frac{dt}{dN} = \frac{10}{N} + \frac{10}{500 - N}$
$\int dt = \int \left(\frac{10}{N} + \frac{10}{500 - N}\right) dN$
$t = 10\ln N - 10\ln 500 - N + c$ (1)
$t = 10\ln\left \frac{N}{500 - N}\right + c$
$t = 0, N = 100 \implies 0 = 10 \ln \left \frac{100}{500 - 100} \right + c$
$0 = 10\ln\left \frac{1}{4}\right + c$
$c = 10 \ln 4$
i.e $t = 10 \ln \left \frac{N}{500 - N} \right + 10 \ln 4$
$\therefore t = 10 \ln \left \frac{4N}{500 - N} \right $

CALCULATOR-ASSUMED MARKING KEY

Mathematical behaviours	Marks
 integrates correctly to form statement (1) or its equivalent 	1
• use the condition $t = 0, N = 100$ to determine the correct constant of	1
integration	1
obtains the required expression for t	I

Question 19(d)

Solution	
$t = 10 \ln \left \frac{4N}{500 - N} \right $	
$\frac{\mathbf{t}}{10} = \log_e \left \frac{4N}{500 - N} \right $	
$e^{\frac{t}{10}} = \frac{4N}{500 - N}$	
$500e^{\frac{t}{10}} - e^{\frac{t}{10}}N = 4N$	
$500e^{\frac{t}{10}} = 4N + e^{\frac{t}{10}}N$	
$500e^{\frac{t}{10}} = N\left(4 + e^{\frac{t}{10}}\right)$	
$N = \frac{500e^{\frac{t}{10}}}{4 + e^{\frac{t}{10}}} = \frac{500}{4e^{-\frac{t}{10}} + 1}.$	
Mathematical behaviours	Marks
• expresses $\frac{4N}{500-N}$ in terms of an exponential function	1
• rearranges and obtains an expression for <i>N</i> correctly	1

Question 19(e)

(2 marks)

Solution	
When $t = 18$ then $N \approx 300.99$ or $N = 301$ to the nearest integer	
Mathematical behaviours	Marks
 substitutes value of t in the appropriate equation 	1
 solves correctly for N to the nearest integer 	1

Question 20(a)

(2 marks)

Solution	
The given curve cuts the x-axis at $x = 0, 2$ Thus $A = \int_{0}^{2} h_{x}(2 - x) dx = h \int_{0}^{2} (2x - x^{2}) dx = h \left[x^{2} - \frac{1}{2} x^{3} \right]^{2} = h \left(4 - \frac{8}{2} \right) - \frac{4k}{2}$	
$A = \int_{0}^{0} kx(2-x) dx = k \int_{0}^{0} (2x-x^{2}) dx = k \left[x^{2} - \frac{1}{3}x^{2} \right]_{0}^{0} = k \left[4 - \frac{1}{3} \right] = \frac{1}{3}$	
Mathematical behaviours	Marks
 identifies the limits of the integration 	1
 deduces the correct value of the area 	1

Question 20(b)

Solution	
Now	
$V_{1} = \pi \int_{0}^{2} y^{2} dx = \pi k^{2} \int_{0}^{2} (4x^{2} - 4x^{3} + x^{4}) dx = \pi k^{2} \left[\frac{4}{3}x^{3} - x^{4} + \frac{1}{5}x^{5}\right]_{0}^{2} = \pi k^{2} \left[32\left(\frac{1}{3}x^{3} - x^{4}\right) + \frac{1}{5}x^{5}\right]_{0}^{2} = \pi k^{2} \left[32\left(\frac{1}{3}x^{5} - x^{5}\right]_{0}^{2} = \pi k^{5} \left[3$	$\left(+\frac{1}{5}\right)-16$
$=16\pi k^2 \left[\frac{16}{15} - 1\right]$	$=\frac{16}{15}\pi k^2$
Mathematical behaviours	Marks
 integrates correctly 	1
 simplifies to derive the correct answer 	1

Question 20(c)

(6 marks)

Solution

For each value of $y \in [0, k]$ there are two values x_1 and $x_2 (> x_1)$ for which kx(2-x) = yNow required volume V_2 obtained by rotating area *A* about the *y*-axis is

$$V_2 = \pi \int_{0}^{\kappa} \left(x_2^2 - x_1^2 \right) dy$$

Now x_1 and x_2 are the roots of $x^2 - 2x + (y/k) = 0$ so $x_{1,2} = 1 \pm \sqrt{1 - (y/k)}$ Then we deduce that $x_2^2 - x_1^2 = (x_2 - x_1)(x_2 + x_1) = 4\sqrt{1 - (y/k)}$. Hence

$$V_2 = 4\pi \int_0^k \sqrt{1 - \frac{y}{k}} \, dy$$

and if u = 1 - (y/k) then

$$V_2 = \pi \int_{1}^{0} \sqrt{u} (-k) du = k \pi \left[\frac{2}{3}u^{3/2}\right]_{0}^{1} = \frac{2k\pi}{3}$$

Then, if $V_1 = V_2$ so

$$\frac{16}{15}k^2 = \frac{2}{3}k \Longrightarrow k = \frac{5}{8}$$

Mathematical behaviours	Marks
 notes that for each value of <i>y</i> in range there are two corresponding <i>x</i> derives expressions for <i>x</i>₁ and <i>x</i>₂ in terms of <i>y</i> writes down the integral for <i>V</i>₂ in terms of <i>y</i> uses an appropriate substitution to evaluate the integral equates with <i>V</i>₁ deduces the required value for <i>k</i> 	1 1 1 1 1

Question 21(a)

(2 marks)

Solution	
$\boldsymbol{r}_1(t) = 5t\boldsymbol{i} + 4t\boldsymbol{j} + 16\boldsymbol{k}$	
So $v_1(t) = 5i + 4j$ (*)	
and so the speed is given by	
$\ \boldsymbol{v}_1(t)\ = \sqrt{5^2 + \sqrt{4^2}} = \sqrt{41} \cong 6.40 \ cms^{-1}$	
Mathematical behaviours	Marks
differentiates correctly (*)	1
obtains correct answer	1

Question 21(b)

Solution	
$\boldsymbol{v}_{2}(t) = \int_{0}^{t} \boldsymbol{a}(u) du + \boldsymbol{v}_{2}(0) = \int_{0}^{t} -2\boldsymbol{k} du + \boldsymbol{i} + 2\boldsymbol{j} + 8\boldsymbol{k} = \boldsymbol{i} + 2\boldsymbol{j} + (8 - 2t)\boldsymbol{k}$	(*)
and $r_2(t) = \int_0^t v(u) du + r_2(0) = \int_0^t (i + 2j + (8 - 2u)k) du + 6i$	
$= (t+6)i + 2tj + (8t-t^{2})k $ (**)
So the height at time t is $8t - t^2$	
The maximum of $8t - t^2$ occurs when $t = 4$ and is 16.	
So the maximum height is 16 cm.	
Mathematical behaviours	Marks
• solves for $r_2(t)$ (**)	1
• find value of t which maximizes $8t - t^2$	1
obtains correct answer	1

Question 21(c)

(3 marks)

Solution	
The flight paths intersect if $r_1(t) = r_2(t')$ for some values of t and t'.	
$r_1(t) = r_2(t')$ implies $8t' - t'^2 = 16$, i.e. $t' = 4$.	
$r_2(4) = 10i + 8j + 16k$	
Now $r_1(2) = 10i + 8j + 16k$	
So the paths intersect at the point with coordinates (10,8,16)	
Since the particles are at the intersection point at different times, there is no collision.	
Mathematical behaviours	Marks
• uses $r_1(t) = r_2(t')$ (*)	1
 shows that the paths intersect 	1
 shows that there is no collision 	1

CALCULATOR-ASSUMED MARKING KEY

Question 21(d)

(2 marks)

Solution	
$\boldsymbol{r_1}(t) - \boldsymbol{r_2}(t) = (4t - 6)\boldsymbol{i} + (2t)\boldsymbol{j} + (16 - 8t + t^2)\boldsymbol{k} $ (*)	
So $d^2 = (4t-6)^2 + (2t)^2 + (16-8t+t^2)^2 = 4(2t-3)^2 + 4t^2 + (t-4)^4$	
Mathematical behaviours	Marks
• finds $r_1(t) - r_2(t)$ (*)	1
• evaluates $d^2 = \ r_1(t) - r_2(t)\ ^2$	1

Question 21(e)

(2 marks)

Question 21(f)

Solution	
$r_1(2) - r_2(2) = 2i + 4j + 4k$	
and $v_1(2) - v_2(2) = 4i + 2j - 4k$	
So $(r_1(2) - r_2(2))$. $(v_1(2) - v_2(2)) = 2 \times 4 + 4 \times 2 + 4 \times (-4) = 0$ (*)	
Since the dot product is 0 the vectors are perpendicular.	
Mathematical behaviours	Marks
• evaluates $r_1(2) - r_2(2)$ and $v_1(2) - v_2(2)$	1
 evaluates dot product (*) 	1
gives a valid reason	1